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Descriptors

From Functional Wart
to

Decorator Madness
via

Properties
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Long, long ago

In the deep darkness of the pre-2.2 era...
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There was a wart

A wart of functions
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A functional wart

A wart only metaprogrammers really 
cared about...
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'I just want to be loved' said the 
metaprogrammers! 

def hug():
print 'hug'

class TeddyBear:
DEFAULT_FUNC = hug
def __init__( self, action=None ):

self.love = action or self.DEFAULT_FUNC

TeddyBear(hug).love()

TeddyBear().love()
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A pox on all methods! they cried

What evil magic is this?

(Forgetting all the good this magic did 
for them all the other days)
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That old black magic
def __getattribute__( object, name ):

if object.__dict__.has_key( name ):
return object.__dict__[name]

if class_lookup(object.__class__, name ) is not NULL:
value = class_lookup( object.__class__, name )
if isinstance( value, types.FunctionType ):

return types.MethodType(
value, object,
object.__class__

)
else:

return value
if hasattr(object.__class__, '__getattr__' ):

return object.__class__.__getattr__( object, name )
raise AttributeError( name )



VexTechDescriptors: PyCon 2005

Geeky note

One attribute intercepted
One attribute overridden

One place the pattern seen
In the darkness of classic Python

Where the metaprogrammers cried



VexTechDescriptors: PyCon 2005

The age of logic begins...

Python 2.2 rationalised patterns
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Prometheus retold

Made metaprogramming in Python 
practical
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Ducks mate with Python 2.2

Duck-typing
and

protocols

Objects playing roles
regardless of their identity
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Escape from the dungeon of C

2.2 introduced new hooks
to let Python programmers

metaprogram
without C



VexTechDescriptors: PyCon 2005

Now any fool with a tab key can 
create a new descriptor type

Or a new metaclass

Or (horrors) a metadata-driven web-
framework
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For those who missed the 
foreshadowing...

Obviously society is going to
crash and burn

in a few minutes



VexTechDescriptors: PyCon 2005

Attribute access becomes a tool 
of the metaprogrammer...
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What rules go there!?

To lookup an attribute:

instance.__getattribute__( attrname)
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The object does whatever it 
wants

Anarchy!
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Rather too polite an anarchy...

Default (old-style) classes didn't fix the 
wart at all
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But...

Another metaclass
 could do something different
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And become a hero to us all...

Thus

type and object

were born
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How did they vanquish the wart?

What is a cleaner version
of the functional wart?

What was the general pattern
that underpinned it?
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Know the nature of the wart

Objects in the class namespace
can intercept attribute-access

for instances
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Tame the wart

Create hooks for two new points in the 
attribute-access mechanism

One matches the old functional wart

One answers the metaprogrammers' 
request to intercept a single attribute
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New-style instance attributes
def __getattribute__( self, name ):

cls = type(self)
if class_lookup(cls, name ) is not NULL:

desc = class_lookup( cls, name )
if hasattr( desc, '__get__'):

# is a descriptor...
if not( 

hasattr( desc, '__set__') or 
hasattr( desc, '__delete__' )

):
# non-data-descriptor, can be overridden
if self.__dict__.has_key( name ):

return self.__dict__[name]
return desc.__get__( self, cls )

...
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New-style instance attributes 
(cont)

elif (
hasattr( desc, '__set__') or 
hasattr( desc, '__delete__') ):
raise AttrbuteError( '__get__', desc )

else:
if self.__dict__.has_key( name ):

return self.__dict__[name]
else:

return desc
elif self.__dict__.has_key(name):

return self.__dict__[name]
elif name != '__getattr__' and hasattr(cls, '__getattr__'):

return cls.__getattr__( self, name )
else:

raise AttributeError( name )
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Make the beast part of society...

Teach functions to use those hooks
instead of relying on their special 

identity as functions

Allow non-function objects to play the 
same (or similar) roles
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The first act of taming is naming

Needed way to describe those descriptors 
which hooked one point versus the other
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“Non-data descriptors”

Only intercept attribute lookup on the 
class

Overridden by instance-attributes
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Function-like Descriptors

class Function( types.FunctionType ):
"""What a function descriptor looks like"""
def __get__( self, client, cls ):

"""Retrieve/calculate the value for client instance"""
if client is not None:

return types.MethodType( self, client, type(client) )
else:

return types.UnboundMethodType(self, None, cls)
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“Data descriptors”

Have __set__ or __delete__

Intercept lookup from both instance and 
class (oh, and allow for setting values on 

the instance)
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Attribute-like Descriptors
class Descriptor( object ):

"""A simple descriptor"""
def __get__( self, client, cls ):

"""Retrieve/calculate the value for client instance"""
if client is not None:

return client.__dict__[ 'hello' ]
else:

return self
def __set__( self, client, value ):

"""Set the value on the client instance"""
client.__dict__[ 'hello' ] = value

def __delete__( self, client ):
"""Delete the value from the client instance"""
del client.__dict__[ 'hello' ]
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The canon of 2.2 descriptors...

classmethod
Method takes first argument as class

staticmethod
Method ignores first argument

property
Attribute created from accessor/mutator 

functions/methods



VexTechDescriptors: PyCon 2005

Society is bemused

Most programmers look at the core 
descriptors and yawn
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What's the big deal?

Methods that ignore an argument...
Attributes made of 3 functions...

Not exactly what they asked
Santa to bring
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But metaprogrammers quietly 
start to play with the new 

features...

Oh, how ominous!
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The “Elven” descriptor packages

“Attributes that”

Typed-oo heritage, fields/properties

“Building castles in the air”

One or two types per system



VexTechDescriptors: PyCon 2005

OpenGLContext (VRML97 fields)

● Typing (mostly Numpy arrays)
● Defaults
● Observability (cache operations)
● Introspection
● Domain-specific
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BasicProperty, PyTable, wxoo

● Typing and validation
● Defaults
● Introspection (wxoo editor, web editor)
● General domain modelling framework
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Zope

● FieldProperty, DublinCore
● Data validation, error messages
● Defaults
● Introspection
● Observability
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PEAK

● Automatic hierarchic maintenance
● Value acquisition (defaults, delegation)
● Wrap loaded features to look like attrs
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Traits (almost descriptors)

● Delegation to other objects
● Typing and data validation
● Defaults
● Observability
● Introspection (w/GUI library editors)
● Descriptor-like, not actual descriptors
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The “Dwarven” descriptors

“Functions that”

Non-data descriptors

“Hammering on the metal”

+ lots of different low-level operations



VexTechDescriptors: PyCon 2005

FFI/C-code Wrapping

PyObjC, ctypes, JythonC, IronPython

All declare lots of metadata about 
functions (parameter and return types, 

calling convention, DLL sources)
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Decorating masses...

Lock-protected methods
Type-dispatched compound methods
Result-caching/memoizing methods

Database-aware methods
Currying methods

Pre/post-conditioned methods
Constant-binding methods

Docstring mutating methods
Error-catching methods
Type-checking methods
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Even more massing hordes...

Type converting methods
Generator wrapping methods

Deprecated/warning/abstract methods
Logged/call-counted methods
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Metamasses cry for decorators!

Syntax for classmethod and staticmethod 
was always planned

But it was ctypes & co that seemed to 
carry the day for getting decorator 

syntax into 2.4
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Here's why

def doSomething( a,b,c ):
"""Do something via FFI"""

doSomething = protected( someLock )( doSomething )
doSomething = typed( str, int, str )( doSomething )
doSomething = calltype( WINDLL )( doSomething )
doSomething = fromDLL( myDLL )( doSomething )
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Let 10,000 messages deluge c.l.p

Much heat and noise deciding the syntax
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We did (eventually) get a syntax

(For those who stopped reading c.l.p 
during the debate)



VexTechDescriptors: PyCon 2005

Decorators help with the pain...

@fromDLL( myDLL )
@calltype( WINDLL )
@typed( str, int, str )
@protected( someLock )
def doSomething( a,b,c ):

"""Do something via FFI"""
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The gathering storm...

Throughout the debate on decorators
(and to this day)

there is an assumption that these 
Dwarven descriptors, and particularly 

“decorated” functions will become more 
common, that they will multiply 

exponentially
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The ravening hordes

And now we have decorators breeding in 
the blogs and wikis of the metaverse
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Thirsting for our functions

Waiting to make every method an essay in 
magic, a surprise, a wonder
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This decorator magic is a 
powerful force

We must use it wisely
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Or risk falling to the dark side

And losing the simplicity that made 
Python great

Forcing every programmer to become a 
meta-magician just to debug their 5 line 

script
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When magic rules

There are no rules.


