
VexTechDescriptors: PyCon 2005

Descriptors

From Functional Wart
to

Decorator Madness
via

Properties

VexTechDescriptors: PyCon 2005

Long, long ago

In the deep darkness of the pre-2.2 era...

VexTechDescriptors: PyCon 2005

There was a wart

A wart of functions

VexTechDescriptors: PyCon 2005

A functional wart

A wart only metaprogrammers really
cared about...

VexTechDescriptors: PyCon 2005

'I just want to be loved' said the
metaprogrammers!

def hug():
print 'hug'

class TeddyBear:
DEFAULT_FUNC = hug
def __init__(self, action=None):

self.love = action or self.DEFAULT_FUNC

TeddyBear(hug).love()

TeddyBear().love()

VexTechDescriptors: PyCon 2005

A pox on all methods! they cried

What evil magic is this?

(Forgetting all the good this magic did
for them all the other days)

VexTechDescriptors: PyCon 2005

That old black magic
def __getattribute__(object, name):

if object.__dict__.has_key(name):
return object.__dict__[name]

if class_lookup(object.__class__, name) is not NULL:
value = class_lookup(object.__class__, name)
if isinstance(value, types.FunctionType):

return types.MethodType(
value, object,
object.__class__

)
else:

return value
if hasattr(object.__class__, '__getattr__'):

return object.__class__.__getattr__(object, name)
raise AttributeError(name)

VexTechDescriptors: PyCon 2005

Geeky note

One attribute intercepted
One attribute overridden

One place the pattern seen
In the darkness of classic Python

Where the metaprogrammers cried

VexTechDescriptors: PyCon 2005

The age of logic begins...

Python 2.2 rationalised patterns

VexTechDescriptors: PyCon 2005

Prometheus retold

Made metaprogramming in Python
practical

VexTechDescriptors: PyCon 2005

Ducks mate with Python 2.2

Duck-typing
and

protocols

Objects playing roles
regardless of their identity

VexTechDescriptors: PyCon 2005

Escape from the dungeon of C

2.2 introduced new hooks
to let Python programmers

metaprogram
without C

VexTechDescriptors: PyCon 2005

Now any fool with a tab key can
create a new descriptor type

Or a new metaclass

Or (horrors) a metadata-driven web-
framework

VexTechDescriptors: PyCon 2005

For those who missed the
foreshadowing...

Obviously society is going to
crash and burn

in a few minutes

VexTechDescriptors: PyCon 2005

Attribute access becomes a tool
of the metaprogrammer...

VexTechDescriptors: PyCon 2005

What rules go there!?

To lookup an attribute:

instance.__getattribute__(attrname)

VexTechDescriptors: PyCon 2005

The object does whatever it
wants

Anarchy!

VexTechDescriptors: PyCon 2005

Rather too polite an anarchy...

Default (old-style) classes didn't fix the
wart at all

VexTechDescriptors: PyCon 2005

But...

Another metaclass
 could do something different

VexTechDescriptors: PyCon 2005

And become a hero to us all...

Thus

type and object

were born

VexTechDescriptors: PyCon 2005

How did they vanquish the wart?

What is a cleaner version
of the functional wart?

What was the general pattern
that underpinned it?

VexTechDescriptors: PyCon 2005

Know the nature of the wart

Objects in the class namespace
can intercept attribute-access

for instances

VexTechDescriptors: PyCon 2005

Tame the wart

Create hooks for two new points in the
attribute-access mechanism

One matches the old functional wart

One answers the metaprogrammers'
request to intercept a single attribute

VexTechDescriptors: PyCon 2005

New-style instance attributes
def __getattribute__(self, name):

cls = type(self)
if class_lookup(cls, name) is not NULL:

desc = class_lookup(cls, name)
if hasattr(desc, '__get__'):

is a descriptor...
if not(

hasattr(desc, '__set__') or
hasattr(desc, '__delete__')

):
non-data-descriptor, can be overridden
if self.__dict__.has_key(name):

return self.__dict__[name]
return desc.__get__(self, cls)

...

VexTechDescriptors: PyCon 2005

New-style instance attributes
(cont)

elif (
hasattr(desc, '__set__') or
hasattr(desc, '__delete__')):
raise AttrbuteError('__get__', desc)

else:
if self.__dict__.has_key(name):

return self.__dict__[name]
else:

return desc
elif self.__dict__.has_key(name):

return self.__dict__[name]
elif name != '__getattr__' and hasattr(cls, '__getattr__'):

return cls.__getattr__(self, name)
else:

raise AttributeError(name)

VexTechDescriptors: PyCon 2005

Make the beast part of society...

Teach functions to use those hooks
instead of relying on their special

identity as functions

Allow non-function objects to play the
same (or similar) roles

VexTechDescriptors: PyCon 2005

The first act of taming is naming

Needed way to describe those descriptors
which hooked one point versus the other

VexTechDescriptors: PyCon 2005

“Non-data descriptors”

Only intercept attribute lookup on the
class

Overridden by instance-attributes

VexTechDescriptors: PyCon 2005

Function-like Descriptors

class Function(types.FunctionType):
"""What a function descriptor looks like"""
def __get__(self, client, cls):

"""Retrieve/calculate the value for client instance"""
if client is not None:

return types.MethodType(self, client, type(client))
else:

return types.UnboundMethodType(self, None, cls)

VexTechDescriptors: PyCon 2005

“Data descriptors”

Have __set__ or __delete__

Intercept lookup from both instance and
class (oh, and allow for setting values on

the instance)

VexTechDescriptors: PyCon 2005

Attribute-like Descriptors
class Descriptor(object):

"""A simple descriptor"""
def __get__(self, client, cls):

"""Retrieve/calculate the value for client instance"""
if client is not None:

return client.__dict__['hello']
else:

return self
def __set__(self, client, value):

"""Set the value on the client instance"""
client.__dict__['hello'] = value

def __delete__(self, client):
"""Delete the value from the client instance"""
del client.__dict__['hello']

VexTechDescriptors: PyCon 2005

The canon of 2.2 descriptors...

classmethod
Method takes first argument as class

staticmethod
Method ignores first argument

property
Attribute created from accessor/mutator

functions/methods

VexTechDescriptors: PyCon 2005

Society is bemused

Most programmers look at the core
descriptors and yawn

VexTechDescriptors: PyCon 2005

What's the big deal?

Methods that ignore an argument...
Attributes made of 3 functions...

Not exactly what they asked
Santa to bring

VexTechDescriptors: PyCon 2005

But metaprogrammers quietly
start to play with the new

features...

Oh, how ominous!

VexTechDescriptors: PyCon 2005

The “Elven” descriptor packages

“Attributes that”

Typed-oo heritage, fields/properties

“Building castles in the air”

One or two types per system

VexTechDescriptors: PyCon 2005

OpenGLContext (VRML97 fields)

● Typing (mostly Numpy arrays)
● Defaults
● Observability (cache operations)
● Introspection
● Domain-specific

VexTechDescriptors: PyCon 2005

BasicProperty, PyTable, wxoo

● Typing and validation
● Defaults
● Introspection (wxoo editor, web editor)
● General domain modelling framework

VexTechDescriptors: PyCon 2005

Zope

● FieldProperty, DublinCore
● Data validation, error messages
● Defaults
● Introspection
● Observability

VexTechDescriptors: PyCon 2005

PEAK

● Automatic hierarchic maintenance
● Value acquisition (defaults, delegation)
● Wrap loaded features to look like attrs

VexTechDescriptors: PyCon 2005

Traits (almost descriptors)

● Delegation to other objects
● Typing and data validation
● Defaults
● Observability
● Introspection (w/GUI library editors)
● Descriptor-like, not actual descriptors

VexTechDescriptors: PyCon 2005

The “Dwarven” descriptors

“Functions that”

Non-data descriptors

“Hammering on the metal”

+ lots of different low-level operations

VexTechDescriptors: PyCon 2005

FFI/C-code Wrapping

PyObjC, ctypes, JythonC, IronPython

All declare lots of metadata about
functions (parameter and return types,

calling convention, DLL sources)

VexTechDescriptors: PyCon 2005

Decorating masses...

Lock-protected methods
Type-dispatched compound methods
Result-caching/memoizing methods

Database-aware methods
Currying methods

Pre/post-conditioned methods
Constant-binding methods

Docstring mutating methods
Error-catching methods
Type-checking methods

VexTechDescriptors: PyCon 2005

Even more massing hordes...

Type converting methods
Generator wrapping methods

Deprecated/warning/abstract methods
Logged/call-counted methods

VexTechDescriptors: PyCon 2005

Metamasses cry for decorators!

Syntax for classmethod and staticmethod
was always planned

But it was ctypes & co that seemed to
carry the day for getting decorator

syntax into 2.4

VexTechDescriptors: PyCon 2005

Here's why

def doSomething(a,b,c):
"""Do something via FFI"""

doSomething = protected(someLock)(doSomething)
doSomething = typed(str, int, str)(doSomething)
doSomething = calltype(WINDLL)(doSomething)
doSomething = fromDLL(myDLL)(doSomething)

VexTechDescriptors: PyCon 2005

Let 10,000 messages deluge c.l.p

Much heat and noise deciding the syntax

VexTechDescriptors: PyCon 2005

We did (eventually) get a syntax

(For those who stopped reading c.l.p
during the debate)

VexTechDescriptors: PyCon 2005

Decorators help with the pain...

@fromDLL(myDLL)
@calltype(WINDLL)
@typed(str, int, str)
@protected(someLock)
def doSomething(a,b,c):

"""Do something via FFI"""

VexTechDescriptors: PyCon 2005

The gathering storm...

Throughout the debate on decorators
(and to this day)

there is an assumption that these
Dwarven descriptors, and particularly

“decorated” functions will become more
common, that they will multiply

exponentially

VexTechDescriptors: PyCon 2005

The ravening hordes

And now we have decorators breeding in
the blogs and wikis of the metaverse

VexTechDescriptors: PyCon 2005

Thirsting for our functions

Waiting to make every method an essay in
magic, a surprise, a wonder

VexTechDescriptors: PyCon 2005

This decorator magic is a
powerful force

We must use it wisely

VexTechDescriptors: PyCon 2005

Or risk falling to the dark side

And losing the simplicity that made
Python great

Forcing every programmer to become a
meta-magician just to debug their 5 line

script

VexTechDescriptors: PyCon 2005

When magic rules

There are no rules.

